Araclon Biotech

Aβ42/Aβ40 ratio in plasma predicts amyloid-PET status in amnestic-MCI patients

María Pascual-Lucas, Leticia Sarasa, Elisabet Molina, Sergio Castillo, Pedro Pesini and José A. Allué Araclon Biotech-Grifols, Zaragoza, Spain

BACKGROUND

Previous studies have shown that the A β 42/A β 40 ratio in plasma predicts A β status reliably⁽¹⁾, suggesting that the assessment of plasma A β levels could be a useful screening tool for Alzheimer's disease clinical trials.

In this work, we explore the ability of $A\beta 42/A\beta 40$ plasma ratio as determined by a novel antibody-free, HPLC-MS/MS method (ABtest-MS), to predict the A β -PET status at the baseline visit in the ABvac40 (an active vaccine against A $\beta 40$) phase II clinical trial, AB1601 (NCT03461276), that is being led and promoted by Araclon Biotech.

METHODS

A subpopulation of 73 amnestic-MCI (a-MCI) participants who had undergone [18F]Flutemetamol PET scans were considered for the present work. A β -PET status was assessed by visual reading.

 Table 1. Demographic characteristics of the a-MCI patients from the
 AB1601 study at baseline.

		Αβ-ΡΕΤ (-)	Aβ-PET (+)	p value
Participants	n (%)	18 (24.7 %)	55 (75.3 %)	
Age, years	median (IQR)	68.0 (64.3-75.0)	70.0 (66.0-75.0)	0.530
Female	n (%)	7 (38.9 %)	38 (69.1 %)	0.045
APOE ɛ4 carriers	n (%)	7 (38.9 %)	36 (65.5 %)	0.087

Aβ40 and Aβ42 plasma levels were quantified using ABtest-MS, a novel antibody-free, HPLC-MS/MS method. Analytes were extracted directly from plasma and no immunoprecipitation procedure was followed. Intact Aβ1-40 and Aβ1-42 species were measured as no enzymatic digestion was performed. Levels of p-tau181 in plasma were measured with Simoa[®] p-tau181 V2 Advantage Kit (Quanterix, Billerica, MA, USA).

The ability of plasma A β 42/A β 40 ratio or p-tau181 levels to detect A β -PET positivity was assessed as the area under the ROC curve (AUC).

(1) Janelidze, S., et al., Detecting amyloid positivity in early Alzheimer's disease using combinations of plasma A642/A640 and p-tau. Alzheimers Dement, 2021.

RESULTS

1. Distribution of A β 42/A β 40 ratio and p-tau181 levels in plasma between A β -PET groups

A β 42/A β 40 plasma ratio was significantly lower in the A β -PET (+) group than in the A β -PET (-) group (p<0.0001, Mann-Whitney test). The opposite was observed for p-tau181 plasma levels (p<0.0001, Mann-Whitney test).

 Table 2.
 Plasma A642/A640 ratio and p-tau181 levels (median and interquartile range) in A6-PET (-) and A6-PET (+) groups.

	Αβ-ΡΕΤ (-)	Αβ-ΡΕΤ (+)	p value
Plasma Aβ42/Aβ40, ratio	0.217 (0.209-0.229)	0.161 (0.146-0.192)	< 0.0001
Plasma p-tau181, pg/ml	1.90 (1.78-2.63)	3.70 (3.00-4.50)	< 0.0001

Figure 1. Box and whiskers plots of plasma A642/A640 ratio (left graph) and p-tau181 levels (right graph) between A6-PET groups.

2. Discriminative ability of Aβ-PET status

ROC curve analysis for identifying Aβ-PET status revealed an AUC of 0.87 (95% confidence interval [CI] 0.78–0.95) for the Aβ42/Aβ40 ratio. Plasma p-tau181 levels performed identically with an AUC of 0.87 (95% CI 0.77–0.98).

The model combining plasma A β 42/A β 40 ratio and p-tau181 levels outperformed the models of both individual biomarkers alone with an AUC of 0.93 (95% Cl 0.86–1.00; Δ AUC = 0.06).

A negligible increment in the AUC up to 0.94 (95% CI 0.88-1.00) was obtained after adjusting for APOE genotype.

Figure 2. ROC curves for discriminating AB-PET status.

The Youden cutoff of the plasma A β 42/A β 40 ratio (0.199) yielded a sensitivity of 80.0%, an specificity of 94.4% and an overall accuracy of 83.6%. These results were further improved in terms of sensitivity, NPV, accuracy and LR- when adding both plasma biomarkers and APOE genotype in the model.

Table 3. Agreement statistics between logistic regression models and A6-PET status.

Model	Se	Sp	PPV	NPV	Acc	LR+	LR-	1/LR-
Αβ42/Αβ40	80.0%	94.4%	97.8%	60.7%	83.6%	14.4	0.2	4.7
p-tau181	81.8%	83.3%	93.8%	60.0%	82.2%	4.9	0.2	4.6
Aβ42/Aβ40, p-tau181	94.5%	88.9%	96.3%	84.2%	93.2%	8.5	0.1	16.3
Aβ42/Aβ40, p-tau181, ApoE	96.4%	88.9%	96.4%	88.9%	94.5%	8.7	0.0	24.4

CONCLUSIONS

Aβ42/Aβ40 plasma ratio discriminates Aβ-PET positivity with high accuracy in this cohort of a-MCI individuals, performing as well as p-tau181.

The combination of both plasma biomarkers in addition to APOE genotype in the regression model yields an accuracy close to 95%, and could be used as a helpful tool for prediction of A β -PET status.