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Abstract 

Background Accessible and cost‑effective diagnostic tools are urgently needed to accurately quantify blood 
biomarkers to support early diagnosis of Alzheimer’s disease (AD). In this study, we investigated the ability of plasma 
amyloid‑beta (Aβ)42/Aβ40 ratio measured by an antibody‑free mass‑spectrometric (MS) method, ABtest‑MS, to detect 
early pathological changes of AD.

Methods This cohort study included data from the baseline and 2‑year follow‑up visits from the Fundació ACE 
Healthy Brain Initiative (FACEHBI) study. Plasma Aβ42/Aβ40 was measured with ABtest‑MS and compared to 18F‑Flor‑
betaben PET as the reference standard (cutoff for early amyloid deposition of 13.5 centiloids). Cross‑validation was 
performed in an independent DPUK‑Korean cohort. Additionally, associations of plasma Aβ42/Aβ40 with episodic 
memory performance and brain atrophy were assessed.

Results The FACEHBI cohort at baseline included 200 healthy individuals with subjective cognitive decline (SCD), 
of which 36 (18%) were Aβ‑PET positive. Plasma Aβ42/Aβ40 levels were significantly lower in Aβ‑PET positive indi‑
viduals (median [interquartile range, IQR], 0.215 [0.203–0.236]) versus Aβ‑PET negative subjects (median [IQR], 0.261 
[0.244–0.279]) (P < .001). Plasma Aβ42/Aβ40 was significantly correlated with Aβ‑PET levels (rho = −0.390; P < .001) 
and identified Aβ‑PET status with an area under the receiver operating characteristic curve (AUC) of 0.87 (95% confi‑
dence interval [CI], 0.80–0.93). A cutoff for the Aβ42/Aβ40 ratio of 0.241 (maximum Youden index) yielded a sensitivity 
of 86.1% and a specificity of 80.5%. These findings were cross‑validated in an independent DPUK‑Korean cohort (AUC 
0.86 [95% CI 0.77–0.95]). Lower plasma Aβ42/Aβ40 ratio was associated with worse episodic memory performance 
and increased brain atrophy. Plasma Aβ42/Aβ40 at baseline predicted clinical conversion to mild cognitive impair‑
ment and longitudinal changes in amyloid deposition and brain atrophy at 2‑year follow‑up.
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Conclusions This study suggests that plasma Aβ42/Aβ40, as determined by this MS‑based assay, has potential value 
as an accurate and cost‑effective tool to identify individuals in the earliest stages of AD, supporting its implementa‑
tion in clinical trials, preventative strategies and clinical practice.

Keywords Alzheimer’s disease, Amyloid, Aβ42/Aβ40, Ratio, Biomarkers, Plasma, Blood biomarkers, Mass 
spectrometry, Subjective cognitive decline

Background
Alzheimer’s disease (AD) is the most common form of 
dementia affecting 55 million people worldwide in 2021 
[1]. The manifestation of clinical symptoms in AD is pre-
ceded by a long preclinical phase where cognitively nor-
mal individuals present neuropathological changes in the 
brain. In this context, supporting biomarker information 
is particularly important to assist diagnosis and progno-
sis of at-risk individuals.

The earliest pathological hallmark of AD, brain 
amyloid-β (Aβ) deposition, can be reliably identified by 
two well-established methods: cerebrospinal fluid (CSF) 
and positron emission tomography (PET)-based Aβ 
measures [2, 3]. However, the widespread implementa-
tion of these biomarkers to facilitate patient screening in 
clinical trials or in routine clinical practice is hampered 
by their invasiveness, costs and limited availability. Thus, 
more accessible and cost-effective diagnostic approaches, 
such as blood-based biomarkers, are urgently needed.

The reliable measurement of Aβ in plasma results tech-
nically challenging due to the low abundance of the pep-
tides in a complex matrix such as plasma [4]; therefore, 
highly sensitive, accurate and robust assays are desirable. 
In recent years, technological advances have made pos-
sible the accurate and robust quantification of plasma 
Aβ40 and Aβ42. Multiple assays, either immunoassays 
or mass-spectrometry (MS)-based methods, have proved 
that plasma Aβ42/Aβ40 ratio is an accurate surrogate 
biomarker of brain amyloid pathology [5–8]. However, 
recent round robin studies have found discrepancies in 
the quantification of plasma Aβ40 and specially Aβ42 
among different assays [9]. In addition, emerging evi-
dence has suggested that MS-based methods identify 
brain Aβ deposition more accurately than immunoas-
says [10–12], probably because they are less susceptible 
to the matrix effect present in such a complex fluid. Nev-
ertheless, immunoprecipitation-MS (IP-MS) methods 
are elaborate, high-cost and present modest throughput, 
which limit their accessibility in clinical trials or routine 
clinical practice.

To overcome these challenges, Araclon Biotech 
has developed a novel antibody-free HPLC-MS/MS 
method (ABtest-MS) for the quantification of plasma 
Aβ42/Aβ40 by performing a direct extraction of Aβ 
peptides from plasma. This innovative procedure 

requires neither IP nor digestion steps, which signifi-
cantly reduces time and costs, and ultimately results in 
a more affordable and accessible assay. The main dif-
ferential characteristics of ABtest-MS with respect to 
other MS-based assays are summarized in Supplemen-
tary Table 1.

In this study, we aimed to validate the clinical util-
ity of plasma Aβ42/Aβ40, as determined with ABtest-
MS, by evaluating its predictive ability to detect brain 
amyloid deposition in healthy individuals with subjec-
tive cognitive decline (SCD) from the Fundació ACE 
Healthy Brain Initiative (FACEHBI) cohort [13]. These 
findings have been cross-validated in an independent 
DPUK-Korean cohort. Furthermore, we have tested the 
association of ABtest-MS measures of plasma Aβ42/
Aβ40 with cognitive performance and brain atrophy. 
Finally, we have explored the ability of plasma Aβ42/
Aβ40 to predict clinical progression to mild cognitive 
impairment (MCI) and longitudinal changes in amyloid 
deposition and brain atrophy at 2 years of follow-up.

Methods
Study participants
The study included 200 individuals from the FACEHBI 
cohort, a convenience sample which comprises subjects 
diagnosed with SCD embedded in a long-term single-
centre prospective observational study of cognition, 
biomarkers and lifestyle, performed at Ace Alzheimer 
Center Barcelona. SCD was defined as the coexistence 
of cognitive complaints (a score of ≥ 8 on the Spanish 
Modified Questionnaire of Memory Failures Every day 
[MFE-30]) with normal performance on a comprehen-
sive neuropsychological battery. Further information 
on study design and specific inclusion/exclusion cri-
teria have been described in detail elsewhere [13]. All 
subjects underwent a complete neurological and neu-
ropsychological examination, a set of self-administered 
questionnaires and a battery of multimodal biomark-
ers, including apolipoprotein E (APOE) genotyping, 
magnetic resonance imaging (MRI) and 18F-Florbeta-
ben-PET (FBB-PET). Detailed description of these pro-
cedures is provided below and in the Supplementary 
Information. For the present study, data from baseline 
visit and 2-year follow-up (V2) were analysed.
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Blood sampling and plasma Aβ measurements
Blood samples were collected in polypropylene vials with 
ethylenediaminetetraacetic acid (EDTA) and immedi-
ately refrigerated. Samples were 30 min centrifuged (4000 
g) within 24 h from extraction to collect the plasma and 
then aliquoted and frozen at −80 °C until analysis accord-
ing to recommended plasma handling standardized oper-
ating procedures [14].

Full-length Aβ1-40 and Aβ1-42 concentrations were 
measured from 200 μl of plasma using ABtest-MS, a 
novel antibody-free liquid chromatography-differential 
mobility spectrometry-triple quadrupole mass spectro-
metric (HPLC-DMS-MS/MS) method (Araclon Biotech, 
Zaragoza, Spain). Calibration curves were prepared in 
human plasma after spiking 15N-Aβ40 and 15N-Aβ42 
(rPeptide, Watkinsville, GA, USA) at seven concentra-
tion levels. Calibration ranges were 50–1000 pg/ml for 
15N-Aβ40 and 10-200 pg/ml for 15N-Aβ42. Two identi-
cal calibration curves were used in each analytical run, 
one at the beginning and one at the end of the sequence, 
in order to correct for potential analytical drift during 
the run time. Additionally, three quality control sam-
ples (per duplicate) were also prepared by spiking three 
concentration levels (high: 750/150, mid: 400/75 and 
low: 150/30 pg/ml for 15N-Aβ40 and 15N-Aβ42, respec-
tively) in human plasma. Quality control samples were 
uniformly distributed along the sequence in each run. 
Analytes were extracted directly from plasma as no IP 
procedure was followed. Intact Aβ40 and Aβ42 spe-
cies were measured as no enzymatic digestion was per-
formed. 10 μl of deuterated internal standard solution 
(2H-Aβ40 and 2H-Aβ42, Bachem AG, Bubendorf, Swit-
zerland) were spiked in all samples and response ratios 
corresponding to endogenous species in study samples 
(14N-Aβ40/2H-Aβ40 and 14N-Aβ42/2H-Aβ42) were inter-
polated in the mean calibration curve of each analytical 
run.

The analytical platform was composed of a QTRAP 
 6500+ hybrid linear ion trap-triple quadrupole mass 
spectrometer, fitted with a differential mobility spec-
trometry interface (DMS,  SelexION+) and an IonDrive 
Turbo V Ions Source, coupled to a M3 Micro LC system 
(all from Sciex, Framingham, MA, USA). Analyst 1.6.3 
software (Sciex) was used for data acquisition, while 
MultiQuant 3.0.3 software (Sciex) was used for data 
processing.

Extracts were loaded on a YMC Triart C18, 0.3 × 5mm, 
5 μm trap column (YMC, Kyoto, Japan) at 50 μl/min for 1 
min in 5% acetonitrile (AcN) 0.1% formic acid (FA). After 
the loading step, analytes were eluted and separated on 
a HALO ES-C18, 400Å, 3.4 μm, 0.3× 50 mm analytical 
column (Advanced Materials Technology, Wilmington, 
DE, USA) kept at 50°C in a column oven. Mobile phase A 

was 0.1% FA in water and mobile phase B was 0.1% FA in 
AcN. A linear gradient from 15% to 40% B in 3 min was 
used for separation. Total gradient time was 5.5 min, and 
total cycle time was 9 min (trapping + separation + col-
umn regeneration). The mass spectrometer was operated 
in positive ion mode and multiple reaction monitoring 
(MRM) acquisition mode. MRM transitions for 15N, 14N 
(endogenous) and 2H-Aβ species were monitored. Dwell 
time was set at 45 ms. MS acquisition time was 5 min 
after sample elution from the trap column. Suitability 
test samples were analysed every day at the beginning of 
the analytical run in order to check system performance 
and equal transmission for light (14N) and heavy (15N) 
species.

Data of sensitivity and parallelism of ABtest-MS are 
provided in Supplementary Table 2.

All liquid chromatography-mass spectrometry analyses 
were performed by personnel who were blind to partici-
pant information.

MRI acquisition
MRI scans were performed on a 1.5-T  Siemens© Magne-
ton Aera (Erlangen, Germany) using a 32-channel head 
coil. Anatomical T1-weighted images were acquired 
using a rapid acquisition gradient-echo 3D magnetiza-
tion-prepared rapid gradient-echo (MPRAGE) sequence 
with the following parameters: repetition time (TR) 2.200 
ms, echo time (TE) 2.66 ms, inversion time (TI) 900 ms, 
slip angle 8°, field of view (FOV) 250 mm, slice thick-
ness 1 mm, and isotropic voxel size 1 × 1 × 1 mm. Sub-
jects also received axial T2-weighted, 3D isotropic fast 
fluid-attenuated inversion recovery (FLAIR) and axial 
T2*-weighted sequences to detect significant vascular 
pathology or microbleeds. Brain atrophy was assessed 
using ventricular and hippocampal volume data normal-
ized by total intracranial volume.

FBB‑PET acquisition
FBB-PET scans were obtained with a  Siemens© Biograph 
molecular-CT machine. PET images were acquired in 
20 min starting from 90 min after intravenous admin-
istration of 300 Mbq of 18F-Florbetaben radio tracer 
 (NeuraCeq©), administered as a single slow intravenous 
bolus (6 s/ml) in a total volume of up to 10 ml. MRI cor-
tical and subcortical segmentation of the T1-weighted 
images was carried out with Freesurfer 5.3 (https:// 
surfer. nmr. mgh. harva rd. edu/). FBB-PET scans were pro-
cessed with the FSL 5.0 package (https:// fsl. fmrib. ox. ac. 
uk/ fsl/ fslwi ki). FBB-PET images were coregistered onto 
structural images, and the standard uptake value ratio 
(SUVR) was determined as the mean value of the corti-
cal regions segmented on MRI, and normalized by the 
cerebellum as the reference region. Centiloid (CL) values 

https://surfer.nmr.mgh.harvard.edu/
https://surfer.nmr.mgh.harvard.edu/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
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were calculated as previously described [15]. Cutoff for 
FBB-PET positivity was established at > 13.5 CL cor-
responding to early amyloid deposition [16]. All images 
underwent an automated de-identification process prior 
to analysis.

Independent validation cohort
The DPUK-Korean cohort was enrolled in the memory 
clinic at Samsung Medical Center (Seoul, Korea) between 
2017 and 2019. Participants classified as old controls 
(OC, cognitively unimpaired [CU] individuals older than 
45 years) were included in the validation cohort. OCs 
were defined to have normal cognition on neuropsycho-
logical tests [17] without a history of neurological or psy-
chiatric disorders. Specific inclusion/exclusion criteria, 
Aβ-PET imaging acquisition and analysis, and plasma 
procedures are described elsewhere [18]. This study was 
approved by the institutional review board of Samsung 
Medical Center.

Statistical analysis
All statistical analyses and data visualization were carried 
out using GraphPad Prism v5.03 (GraphPad Software, 
San Diego, CA, USA), SPSS v18 (IBM, Armonk, NY, 
USA) or MedCalc v20.015 (MedCalc Software, Ostend, 
Belgium). Group differences were examined using the 
Mann-Whitney and Chi-square tests for continuous and 
categorical variables, respectively. Multiple comparisons 
were assessed with the Kruskal-Wallis test followed by 
the Dunn’s pairwise test with adjustment for multiple 
comparisons (Bonferroni correction). Spearman correla-
tion coefficient (rho) was employed to investigate corre-
lations between continuous variables. Logistic regression 
models and receiver operating characteristics (ROC) 
curves were constructed to evaluate the discriminative 
accuracy of brain amyloid deposition. Aβ-PET imaging 
was chosen as the reference standard for comparative 
purposes as it is a recognized biomarker of brain amy-
loid burden. Area under the ROC curve (AUC) of differ-
ent models were compared using DeLong test. External 
validation across independent cohorts was performed 
by testing the model (estimates and intercept) derived in 
FACEHBI, on the DPUK-Korean cohort. To determine 
the association between plasma Aβ42/Aβ40 and longi-
tudinal measures of cognition, brain amyloid deposition 
and brain atrophy, participants were classified as plasma 
Aβ42/Aβ40(+) or Aβ42/Aβ40(−) by applying a cutoff 
of 0.241 corresponding to the maximum Youden index. 
Kaplan-Meier analysis with log-rank test was performed 
to determine the progression to MCI or Aβ-PET(+) sta-
tus at 2-year follow-up. Two-sided P < .05 was considered 
statistically significant.

Results
Participant characteristics
Demographic and clinical characteristics of study par-
ticipants from the FACEHBI cohort at baseline are 
presented in Table  1. In total, 200 participants were 
included in the study, of which 36 (18%) were classified as 
Aβ-PET(+) according to the cutoff for early Aβ-PET pos-
itivity [16]. The median interval between plasma collec-
tion and Aβ-PET scans was 22 days (interquartile range 
[IQR] 15–43 days). The median age of the population was 
67.0 years (IQR 60.0–70.0), being Aβ-PET(+) individu-
als older than Aβ-PET(−) subjects (P < .001). Sex and 
APOE ε4 number of alleles were differentially distributed 
between Aβ-PET(+) and Aβ-PET(−) groups (P = .02 and 
P < .001, respectively). As previously described [19], the 
performance of Aβ-PET(+) participants on the Spanish 
version of the Face-Name Associative Memory Exam 
(S-FNAME) and the derived composite S-FNAME Name 
(SFN-N) was significantly worse than that of Aβ-PET(−) 
subjects (P = .001 and P < .001, respectively).

Association of plasma Aβ42/Aβ40 with early brain amyloid 
deposition
Aβ40 and Aβ42 plasma levels were quantified by ABtest-
MS with high accuracy and precision according to ana-
lytical performance results (Supplementary Tables  3 
and 4). Significant differences were found for Aβ40, Aβ42 
and Aβ42/Aβ40 plasma levels between the Aβ-PET(+) 
and Aβ-PET(−) groups (P < .001 for Aβ40 and Aβ42/
Aβ40, P = .004 for Aβ42) (Table  1, Fig.  1A–C). Aβ42 
and Aβ42/Aβ40 plasma levels showed significant nega-
tive correlations with Aβ-PET CL values (rho = −0.207, 
P = .003 for Aβ42 and rho = −0.390, P < .001 for Aβ42/
Aβ40) (Fig. 1E, F).

Plasma Aβ42/Aβ40 discriminative ability of Aβ‑PET status
Plasma Aβ42/Aβ40 ratio predicted Aβ-PET status accu-
rately with an AUC of 0.87 (95% confidence interval [CI] 
0.80–0.93) (Fig.  2A). A cutoff for the Aβ42/Aβ40 ratio 
of 0.241, corresponding to the maximum Youden index, 
yielded a sensitivity of 86.1% and a specificity of 80.5% 
(Table  2). Concordance rate was 81.5% and, notably, 
among discordant cases, 32/37 (86.5%) were plasma(+)/
PET(−) (Fig. 2C).

ROC curve analyses of plasma Aβ40 and Aβ42 showed 
modest discriminating performance (Supplementary 
Fig. 1) and therefore, only Aβ42/Aβ40 ratio was used for 
subsequent analyses.

Accuracy of the plasma Aβ42/Aβ40 ratio for predict-
ing Aβ-PET status was further examined by adding age, 
sex and APOE ε4 number of alleles as covariates in the 
logistic regression model (Fig. 2A, B and D). The median 
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probability score of the full model was higher among 
Aβ-PET(+) than Aβ-PET(−) participants (P < .001) 
(Fig.  2B). The AUC of the adjusted model increased to 
0.89 (95% CI 0.83–0.94) and significantly outperformed 
the base model including only demographic covariates 
(ΔAUC = 0.08, P = .005) (Table 2). Both age (P = .012) 
and APOE ε4 number of alleles (P = .033) were signifi-
cant predictors in this model.

Clinical performance of ABtest-MS was confirmed by 
ROC analysis of the 2-year follow-up visit (Supplemen-
tary Table 5). Plasma Aβ42/Aβ40 ratio identified Aβ-PET 
status with an AUC of 0.86 (95% CI 0.80–0.93). After 
adjusting with covariates, AUC was further significantly 
increased to 0.90 (95% CI 0.85–0.96) (ΔAUC = 0.04, P = 
.047) (Supplementary Fig. 2).

Cross‑validation in an independent cohort
To assess the generalizability of the FACEHBI results, we 
performed an external cross-validation of the predictive 
model in an independent and trans-ethnic cohort from 
the DPUK-Korean study. The validation cohort consisted 
of 148 CU individuals, of which 17 (11%) were classi-
fied as Aβ-PET(+) according to the previously published 

cutoff of 25.11 direct comparison centiloid units (dcCL) 
[18]. Participant characteristics of the DPUK-Korean 
cohort are shown in Supplementary Table 6.

When applying the estimates and intercept established 
in FACEHBI, we found that plasma Aβ42/Aβ40 adjusted 
with covariates (age, sex and APOE ε4 number of alleles) 
discriminated Aβ-PET status in the validation cohort 
with an AUC of 0.86 (95% CI 0.77–0.95) and an overall 
accuracy of 81.8% (Fig. 3).

Association of plasma Aβ42/Aβ40 with episodic memory 
performance and brain atrophy
Participants from the FACEHBI cohort were classified 
as plasma Aβ42/Aβ40(+) or Aβ42/Aβ40(−) by applying 
a cutoff of 0.241 corresponding to the maximum Youden 
index.

Subjects classified as plasma Aβ42/Aβ40(+) performed 
significantly worse on S-FNAME total score and SFN-N 
composite score, than those who were Aβ42/Aβ40(−) (P 
= .023 and P < .001, respectively) (Fig. 4A and B). A sig-
nificant positive correlation was found between plasma 
Aβ42/Aβ40 ratios and the SFN-N composite score (rho 

Table 1 Participant characteristics of the FACEHBI cohort at  baselinea

Abbreviations: APOE apolipoprotein E, CL centiloid, FBB-PET 18F‑Florbetaben‑PET, MMSE Mini‑Mental State Examination, S-FNAME Spanish version of the Face‑Name 
Associative Memory Exam, SFN-N S‑FNAME‑Name

P values in bold correspond to statistically significant results
a  Data are median values (interquartile range), except for the variables participants, female and APOE ɛ4 number of alleles which are the number of cases (%). 
Differences between Aβ‑PET(−) and Aβ‑PET(+) groups were tested using Mann‑Whitney and Chi‑square tests, as appropriate
b  Aβ‑PET status was defined using the cutoff established at 13.5 CL corresponding to early amyloid deposition [16]
c  N=198, data from two participants were lost due to MRI acquisition problems
d  Data correspond to regional volume corrected by total intracranial volume
e  Full‑length intact Aβ1‑40 and Aβ1‑42 were quantified by ABtest‑MS

Characteristic Aβ‑PET(−)b Aβ‑PET(+)b P value

Participants, No. (%) 164 (82) 36 (18)

Age, years 66.0 (60.0‑69.5) 70.0 (67.0–73.0) .0003
Female, No. (%) 110 (67) 16 (44) .0185
APOE ɛ4, No. (%)

 0 alleles 131 (80) 17 (47) .0002
 1 allele 29 (18) 18 (50)

 2 alleles 4 (2) 1 (3)

Duration of education, years 15.0 (12.0–18.0) 16.0 (10.0–18.0) .9796

FBB‑PET, CL −3.7 (−7.9–1.7) 34.1 (20.3–57.0) < .0001
MMSE, score 29 (29–30) 30 (29–30) .1321

S‑FNAME, score 33.5 (22.0–46.0) 24.0 (16.0–33.0) .0013
SFN‑N composite, score −0.03 (−0.61–0.65) −0.88 (−1.05 to −0.22) < .0001
Ventricular volumec,d, mm3 24959.5 (19776.4–32028.2) 29061.4 (21966.7–38034.6) .1079

Hippocampal volumec,d, mm3 3606.1 (3421.0–3820.8) 3581.8 (3284.2–3792.7) .3611

Plasma Aβ40e, pg/ml 269.3 (243.9–294.2) 297.0 (267.2–317.6) .0009
Plasma Aβ42e, pg/ml 70.2 (63.1–77.3) 63.4 (57.8–72.1) .0041
Plasma Aβ42/Aβ40, ratio 0.261 (0.244–0.279) 0.215 (0.203–0.236) < .0001
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= 0.193, P < .006), while correlation with S-FNAME total 
score resulted non-significant (Fig. 4D and C).

Plasma Aβ42/Aβ40 was also associated with brain 
atrophy, as evidenced by increased ventricular volume 
in Aβ42/Aβ40(+) individuals in comparison to Aβ42/
Aβ40(−) subjects (P = .022) (Supplementary Fig. 3A). A 
trend for reduced hippocampal volume in Aβ42/Aβ40(+) 
participants was found, although the difference did not 
reach statistical significance (P = .097) (Supplementary 
Fig.  3B). Correlations between plasma Aβ42/Aβ40 and 
brain atrophy measures resulted non-significant (Supple-
mentary Fig. 3C–D).

Association of plasma Aβ42/Aβ40 with longitudinal 
measures of cognition, brain amyloid deposition and brain 
atrophy
Participants were followed-up on an annual basis and lon-
gitudinal measures of clinical diagnosis, brain amyloid dep-
osition and brain atrophy at V2 were included in this study.

At this time frame, 20 (12%) of the 165 individuals who 
remained in the study progressed to MCI. Stratifica-
tion of participants according to diagnosis at V2 showed 
significantly lower plasma Aβ42/Aβ40 at baseline in 
Aβ-PET(+) subjects compared with Aβ-PET(−), both 
in the SCD and MCI groups (P < .001) (Supplementary 
Fig. 4). Baseline Aβ42/Aβ40 was associated with conver-
sion to MCI, as SCD subjects who converted to MCI at 
V2 had significantly lower Aβ42/Aβ40 values at baseline 
than SCD participants who remained stable (P = .002) 
(Fig. 5A). Kaplan-Meier analysis demonstrated that indi-
viduals classified as Aβ42/Aβ40(+) at baseline presented 
an increased risk of progression to MCI than Aβ42/
Aβ40(−) subjects (log-rank P = .004) (Fig. 5B).

In this subcohort with Aβ-PET data at follow-up, 31 
participants were Aβ-PET(+) at baseline, six converted 
to Aβ-PET(+) over the 2-year period while 128 remained 
Aβ-PET(−). Noteworthy, Aβ-PET(+) converters pre-
sented significantly lower Aβ42/Aβ40 levels at baseline than 
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Fig. 1 Association of plasma Aβ levels with brain amyloid deposition. A–C Distribution of plasma Aβ40 (A), Aβ42 (B) and Aβ42/Aβ40 (C) levels 
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** P < .01; *** P < .001. Horizontal line depicts median and whiskers depict interquartile range. D–F Correlations between Aβ‑PET CL and Aβ40 (D), 
Aβ42 (E) and Aβ42/Aβ40 (F) levels. Solid blue line represents the regression line; dashed lines represent 95% confidence interval. Abbreviations: CL, 
centiloid
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Fig. 2 Plasma Aβ42/Aβ40 discriminative ability of Aβ‑PET status. A Receiver operating characteristic (ROC) curves for discriminating Aβ‑PET status. 
ROC curves are shown for plasma Aβ42/Aβ40, plasma Aβ42/Aβ40 adjusted with age, sex and APOE ɛ4 number of alleles, and the demographic 
model including only age, sex and APOE ɛ4 number of alleles. B Probability scores distribution derived from the full logistic regression model 
(Aβ42/Aβ40, age, sex, APOE ɛ4 number of alleles) to predict Aβ‑PET status, between Aβ‑PET(−) and Aβ‑PET(+) groups. Model probability scores 
were compared between Aβ‑PET(−) and Aβ‑PET(+) groups using Mann‑Whitney test. *** P < .001. Horizontal line depicts median and whiskers 
depict interquartile range. C, D Concordance plots for plasma Aβ42/Aβ40 levels (C) or full model probability scores (D) and Aβ‑PET CL. Black 
dots correspond to Aβ‑PET(−) individuals; red dots correspond to Aβ‑PET(+) individuals. Dashed vertical lines represent the CL cutoff for Aβ‑PET 
positivity. Dashed horizontal lines represent the cutoffs for plasma Aβ42/Aβ40 or the model probability score based on maximum Youden index 
derived by ROC analyses. Concordant classification is represented by the grey area. Abbreviations: APOE, apolipoprotein E; AUC, area under the 
curve; CI, confidence interval; CL, centiloid; PL, plasma

Table 2 Performance of logistic regression models in predicting Aβ‑PET status

Abbreviations: Acc accuracy, APOE apolipoprotein E, AUC  Area under the ROC curve, CI confidence interval, NPV negative predictive value, PPV positive predictive value, 
Se sensitivity, Sp specificity

P values in bold correspond to statistically significant results
a  P values correspond to the comparison of the AUCs of the Aβ42/Aβ40 model and the full model (Aβ42/Aβ40, age, sex, APOE ɛ4 number of alleles) with the AUC of 
the model comprising age, sex and APOE ɛ4 number of alleles, using the DeLong test

Model AUC 95% CI Se Sp Acc PPV NPV P  valuea

Aβ42/Aβ40 0.87 0.80–0.93 86.1% 80.5% 81.5% 49.2% 96.4% .1544

Aβ42/Aβ40, age, sex, APOE 0.89 0.83–0.94 86.1% 77.4% 79.0% 45.6% 96.2% .0054
Age, sex, APOE 0.81 0.74–0.88 80.6% 69.5% 71.5% 36.7% 94.2% ‑
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those who remained Aβ-PET(−) (P = .024) (Fig. 5C). Sur-
vival curves confirmed an increased risk of conversion to 
Aβ-PET(+) in Aβ42/Aβ40(+) subjects (log-rank P = .006) 
(Fig. 5D). Consistently, plasma Aβ42/Aβ40 at baseline was 
significantly correlated with amyloid accumulation at V2 
(rho = −0.322, P < .001) (Fig. 5E). Individuals with Aβ42/
Aβ40 in the lowest quartile at baseline showed greater 
increases of Aβ-PET CL at 2 years, compared to the other 
three quartiles (P = .077 for Q1 vs Q2, P = .052 Q1 vs Q3 
and P < .001 Q1 vs Q4) (Fig. 5F), suggesting that baseline 
Aβ42/Aβ40 could be useful for risk-stratification of subjects.

Additionally, plasma Aβ42/Aβ40 at baseline was inversely 
correlated with progressive brain atrophy as determined by 
ventricular volume increment (rho = −0.230, P = .003) 
(Fig.  5G). High-risk subjects presenting the lowest Aβ42/
Aβ40 ratios at baseline showed greater increases of ventric-
ular volume over 2 years (P = .007 for Q1 vs Q2, P = .002 
Q1 vs Q3 and P = .007 Q1 vs Q4) (Fig. 5H). No association 
was found between baseline plasma Aβ42/Aβ40 and hip-
pocampal volume changes at V2 (data not shown).

Discussion
In this study, we have presented strong evidence of the 
clinical performance of a novel MS-based method for the 
quantification of plasma Aβ42/Aβ40. We have proved 
that ABtest-MS, which overcomes the drawbacks of 
other MS-based methods due to its simplified workflow, 

shows high accuracy, sensitivity and robustness for the 
detection of early pathological alterations in AD.

As expected and in line with multiple other studies [5, 
6, 8, 20, 21], we found decreased plasma Aβ42/Aβ40 val-
ues in Aβ-PET positive subjects. This reduction resulted 
in an 18% difference between groups, compared to the 
6–14% variation reported in recent studies comparing 
multiple plasma Aβ assays [11, 22]. The narrow dynamic 
range inherent to this plasma biomarker means that the 
clinical robustness of the Aβ42/Aβ40 ratio could be com-
promised if very-low-level variability assays are not used 
in order to assure maximum accuracy [12, 22].

ABtest-MS measures of plasma Aβ42/Aβ40 predicted 
Aβ-PET status with an AUC of 0.87 and an overall 
accuracy of 81.5%. These results are similar or slightly 
superior to those previously reported by IP-MS-based 
methods in CU subjects, with AUCs ranging from 0.70 
to 0.88 [10, 23–27] and accuracies of 72-75% [10, 24, 25]. 
Recent findings with a novel IP-MS method that removes 
the digestion step have also shown increased accuracy 
[28], supporting the hypothesis that simplified workflow 
results in potentially more robust assays and subsequent 
better discriminative accuracy.

The cutoff obtained by ABtest-MS at the maximum 
Youden index to discriminate between Aβ-PET(−) and 
Aβ-PET(+) subjects is not directly comparable to other 
cutoff values generated on other technology platforms 
due to several reasons: (1) ABtest-MS quantify intact 

Fig. 3 Cross‑validation in an independent cohort. A Receiver operating characteristic (ROC) curve for discriminating Aβ‑PET status in the 
DPUK‑Korean cohort after applying the estimates and intercept of the model established in FACEHBI that included plasma Aβ42/Aβ40, age, sex and 
APOE ɛ4 number of alleles. B Concordance plot for the model probability scores of the validation model and Aβ‑PET dcCL. Black dots correspond 
to Aβ‑PET(−) individuals; red dots correspond to Aβ‑PET(+) individuals. Dashed vertical line represents the dcCL cutoff for Aβ‑PET positivity of 
the DPUK‑Korean cohort. Dashed horizontal line represents the cutoff for the model probability score based on maximum Youden index derived 
by ROC analyses in FACEHBI. Concordant classification is represented by the grey area. Abbreviations: APOE, apolipoprotein E; AUC, area under the 
curve; CI, confidence interval; dcCL: direct comparison centiloid units; PL, plasma
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full-length Aβ species, whereas other assays quan-
tify truncated plus full Aβ sequence; (2) the extraction 
method used in ABtest-MS is more aggressive and there-
fore is less susceptible to the non-covalent interactions of 
Aβ peptides with other components of the plasma matrix 
and even antibodies; (3) calibration curves of ABtest-
MS are prepared in the same matrix as the samples, i.e. 

human plasma, in contrast to other assays which use 
saline solutions; (4) unlike CSF, there are no certified ref-
erence materials that would allow different assays to be 
recalibrated [29].

Concordance analyses between plasma Aβ42/Aβ40 
ratio and Aβ-PET status showed a greater number of 
false positive than false negative determinations, that is, 

Fig. 4 Association of plasma Aβ42/Aβ40 with episodic memory performance. Participants were classified as plasma Aβ42/Aβ40(+) or Aβ42/
Aβ40(−) by applying a cutoff of 0.241 corresponding to the maximum Youden index. A, B Distribution of S‑FNAME total score (A) and SFN‑N 
composite score (B) between Aβ42/Aβ40(−) and Aβ42/Aβ40(+) groups. Cognitive scores were compared between Aβ42/Aβ40(−) and Aβ42/
Aβ40(+) groups using Mann‑Whitney test. * P < .05; *** P < .001. Horizontal line depicts median and whiskers depict interquartile range. C, D 
Correlations between Aβ42/Aβ40 and S‑FNAME total score (C) and SFN‑N composite (D) score. Solid blue line represents the regression line; dashed 
lines represent 95% confidence interval
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most of the discordant cases (86.5%) were plasma(+)/
PET(−). This is in agreement with previous findings 
reported by our group [18] and others [10, 23, 24], and 
suggests that Aβ42/Aβ40 values in plasma decline before 
amyloid brain deposition is detectable by Aβ-PET imag-
ing, and therefore, plasma Aβ42/Aβ40 may be a more 
sensitive biomarker in perceiving early changes in brain 
amyloidosis. Accordingly, we also found that subjects 
who converted to Aβ-PET positivity at 2-year follow-up 
presented significantly lower baseline plasma Aβ42/Aβ40 
ratios than those who remained stable, suggesting that 
the plasma biomarker may be useful to identify individu-
als at risk of converting Aβ-PET status in the near future.

By combining the plasma Aβ42/Aβ40 ratio with age, 
sex and APOE ε4 number of alleles, the accuracy for 
identifying abnormal Aβ-PET status was significantly 
superior as compared to that of the base model. This 
means that the predictive ability of the plasma biomarker 
is additive to the risk information provided by the demo-
graphic covariates, and the resulting model achieves an 
AUC of 0.89. These results confer this biomarker a prac-
tical utility as a tool to assist in early diagnosis.

The high sensitivity (86.1%) and negative predictive 
value (96.4%) obtained suggest that plasma Aβ42/Aβ40 
measured with this novel high-sensitivity assay could be 
a valuable pre-screening tool for identification of poten-
tially eligible subjects for clinical trials or anti-amyloid 
therapies, such as the recently conditional approved 
by FDA, Aduhelm [30], or other upcoming treatments. 
Particularly, the implementation of a pre-screening step 
would be especially relevant in AD secondary preven-
tion trials, where the low frequency of amyloid pathology 
in CU individuals results in screening failure rates up to 
80% [31]. In this context and in agreement with previous 
observations from different cohorts of CU individuals [8, 
10, 23, 32, 33], a pre-screening step with ABtest-MS in 
a recruitment scenario targeting the Aβ-positive indi-
viduals with SCD (assuming the same prevalence of Aβ 

positivity as in the FACEHBI cohort) could save 63% of 
the PET scans required, leading to reduced costs and 
accelerated clinical trial recruitment.

In the present study, we found that low plasma Aβ42/
Aβ40 values were associated with worse episodic mem-
ory performance on the S-FNAME, a sensitive face-name 
associative memory test that has been previously associ-
ated to higher Aβ deposition in healthy adults with SCD 
[19]. Accordingly, the association was stronger with the 
SFN-N composite, the most sensitive subtest at detect-
ing brain amyloid deposition. To our knowledge, this 
is the first time that plasma Aβ42/Aβ40 is shown to be 
cross-sectionally associated to cognitive measures in CU 
individuals with SCD. Previous studies have reported 
the absence of associations between plasma amyloid and 
cognitive functioning, probably due to insufficient sensi-
tivity and robustness of the technologies used to quantify 
Aβ plasma peptides, i.e. immunoassay-based techniques 
[34, 35].

Additionally, we observed that individuals with low 
plasma Aβ42/Aβ40 values presented increased ventricu-
lar volume and, at some extent, reduced hippocampal 
volume, suggesting that the plasma biomarker, as deter-
mined by this novel method, can detect the first subtle 
changes in the AD neurodegeneration process. Similarly 
to previous studies showing no association of plasma 
Aβ42/Aβ40 with total brain, grey, and white matter vol-
umes in cognitively normal elderly individuals [36], no 
significant correlations were found between plasma 
Aβ42/Aβ40 ratio and ventricular and hippocampal vol-
umes in our study population. These observations could 
be attributed to the very early stage within the AD con-
tinuum of the FACEHBI cohort.

FACEHBI is a longitudinal long-term study with 
repeated evaluations of cognition and biomarkers. We per-
formed an exploratory assessment of the ability of plasma 
Aβ42/Aβ40 ratio at baseline to predict disease progression 
over 2 years. We found that individuals who progressed to 

(See figure on next page.)
Fig. 5 Association of plasma Aβ42/Aβ40 at baseline with longitudinal measures of clinical diagnosis, brain amyloid deposition and brain atrophy 
at 2‑year follow‑up. A Distribution of plasma Aβ42/Aβ40 levels at baseline between subjective cognitive decline (SCD) and mild cognitive 
impairment (MCI) individuals at 2‑year follow‑up. Plasma Aβ42/Aβ40 levels were compared between SCD and MCI groups using Mann Whitney 
test. ** P < .01. Horizontal line depicts median and whiskers depict interquartile range. B Kaplan‑Meier curves showing fraction of individuals 
remaining SCD. P value of log‑rank test is depicted in the lower right. C Distribution of plasma Aβ42/Aβ40 levels at baseline between Aβ‑PET(−), 
Aβ‑PET(+) and Aβ‑PET(+) converter subjects at 2‑year follow‑up. Aβ‑PET(+) converter subjects were defined as individuals who converted 
from Aβ‑PET(−) at baseline to Aβ‑PET(+) at 2‑year follow‑up. Plasma Aβ42/Aβ40 levels were compared among groups using Kruskal‑Wallis test 
followed by the Dunn’s pairwise test with adjustment for multiple comparisons. * P < .05; *** P < .001. Horizontal line depicts median and whiskers 
depict interquartile range. D Kaplan‑Meier curves showing fraction of individuals remaining Aβ‑PET(−). P value of log‑rank test is depicted in the 
lower right. E, G Correlations between plasma Aβ42/Aβ40 at baseline and amyloid accumulation (E) and brain atrophy (G) at 2‑year follow‑up, as 
determined by Aβ‑PET CL and ventricular volume increments. Solid blue line represents the regression line; dashed lines represent 95% confidence 
interval. F, H Distribution of Aβ‑PET CL (F) and ventricular volume (H) increments among the quartiles of plasma Aβ42/Aβ40 at baseline. Aβ‑PET 
CL and ventricular volume increments were compared using Kruskal‑Wallis test followed by the Dunn’s pairwise test with adjustment for multiple 
comparisons. ** P < .01; *** P < .001. Horizontal line depicts median and whiskers depict interquartile range. Abbreviations: CL, centiloid; Δ, 
increment; MCI, mild cognitive impairment; ns, non‑significant; Q, quartile; SCD, subjective cognitive decline
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Fig. 5 (See legend on previous page.)
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MCI presented lower baseline levels of plasma Aβ42/Aβ40 
than cognitively stable participants. These findings are 
highly concordant with previous studies reporting strong 
associations between low plasma Aβ42/Aβ40 values and 
increased risk of progression to MCI and/or AD dementia 
in CU individuals [33, 35, 37, 38]. Additionally and in line 
with other studies, we also found significant associations 
of plasma Aβ42/Aβ40 at baseline with longitudinal meas-
ures of amyloid brain accumulation [23, 32, 33] and brain 
atrophy [39, 40]. Altogether, these findings suggest that the 
measurement of plasma Aβ42/Aβ40 could be helpful in 
clinical practice to predict short-term disease progression 
in the preclinical stage of AD.

Over the last few years, other blood-based biomark-
ers, particularly different phosphorylated forms of tau, 
have emerged with promising results and are under 
extensive investigation [41–45]. However, recent evi-
dence suggests that plasma Aβ42/Aβ40 could be the 
most accurate biomarker in the very early stages of 
the disease [10, 11, 25, 46], in accordance with previ-
ous observations in CSF samples in which Aβ42/Aβ40 
was the first altered biomarker in the AD continuum 
[47, 48]. Further studies should address the diagnostic 
ability of ABtest-MS measures of plasma Aβ42/Aβ40 in 
combination with other plasma biomarkers at different 
stages of AD.

Among the strengths of this study are the charac-
teristics of the FACEHBI cohort, a well-defined and 
homogeneous population comprised of individuals with 
cognitive complaints but no objective deficits on a stand-
ardized neuropsychological battery. In our opinion, this 
highly relevant population would especially benefit from 
appropriate screening and monitoring in clinical prac-
tice. Another strength is the use of a highly sensitive and 
robust MS-based technology, together with an exten-
sively standardized pre-analytical protocol, which assures 
more consistent and reliable measurements [49]. The 
robustness of the clinical performance of the assay has 
been proved since the cross-sectional results at V2 were 
highly consistent.

Limitations
Limitations of the present study include the relatively 
modest population size recruited in a single centre, which 
may preclude the extrapolation of results to a more het-
erogeneous population-based sample. However, since all 
cognitive and biomarker assessments have been collected 
and processed homogeneously, data uniformity is guaran-
teed. Furthermore, the generalizability of the results has 
already been demonstrated at some extent in this study 
since the model established in the FACEHBI cohort was 
applied to the independent validation DPUK-Korean 
cohort with equivalent accuracy. Another limitation to 

be mentioned is that, at this time, only data at 2-year fol-
low-up is available, which is relatively short for expecting 
progression in subjects with SCD. However, ABtest-MS 
measures of plasma Aβ42/Aβ40 have shown to be able to 
capture changes, not only in amyloid deposition, but also 
in cognition and neurodegeneration within the 2-year 
time frame. Furthermore, and since the follow-up of the 
FACEHBI cohort is currently ongoing, valuable longitu-
dinal information about the ability of plasma Aβ42/Aβ40 
ratio to predict clinical and neuropathological changes in 
the AD continuum will be obtained from successive visits.

Conclusions
In conclusion, in the current study, we have demon-
strated that plasma Aβ42/Aβ40, as determined by this 
innovative MS-based assay, has potential value as an 
accurate and cost-effective tool to identify individuals in 
the earliest stages of the AD continuum, supporting its 
implementation in clinical trials, preventative strategies 
and clinical practice. Further investigations are needed to 
validate the longitudinal performance of ABtest-MS.
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