Araclon Biotech

ABtest-IA: A NEW RELIABLE TOOL FOR THE QUANTIFICATION OF Aβ40 AND Aβ42 IN CSF

Noelia Fandos¹, Judith Romero¹, María Pascual-Lucas¹, Daniel Alcolea² & Sergio Castillo¹

(1) Araclon Biotech, Zaragoza, Spain; (2) Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain

BACKGROUND

The ratio A β 42/A β 40 in cerebrospinal fluid (CSF) is considered one of the most reliable biomarkers of Alzheimer's Disease. **ABtest40-IA and ABtest42-IA (IA: immunoassay)** have been widely used for amyloid- β (A β) quantification in plasma samples¹⁻². The aim of this study was to validate the application of these tests in CSF samples.

METHODS

Analytical validation of ABtest40-IA and ABtest42-IA was accomplished following FDA and EMA reference guidelines.

Table 1: Methodology followed to analytically validate ABtest-IA with CSF samples.

	Samples	Replicates & runs	Acceptance criteria			
Calibration	7 different concentration levels	- 3 replicates/level &	- CV & RE ≤ 20% (25%: ULOQ & LLOQ			
curve	of calibrator in dilution buffer	run	- Total error ≤ 30% (40%: ULOQ & LLOQ)			
Sensitivity	Together with "calibration curve" asays	- 6 independent runs	CV ≤ 25%; RE ≤ 25%; Total error ≤ 40%			
Specificity	3 samples	- 2 replicates/level	75-125% of nominal values			
	(different Aβ values)	-1 run	73-123% Of Hoffillial Values			
Precision	6 samples with different Aβ	- 6 replicates/run	- CV ≤ 20% (25%: ULOQ & LLOQ)			
	levels	- 6 independent runs				
Accuracy	(LLOQ, Low, Mid, High, ULOQ)	-Inter-batch:	- RE ≤ 20% (25%: ULOQ & LLOQ)			
	(EEOQ, EOW, WIII, FIIght, OEOQ)	3 ABtest-IA lots; 3 runs				
Recovery	- 5 samples	- 2 replicates/level	80-120%			
	- High, mid & low spiked Aβ conc.	-1 run	60-120%			
Dilution	- 3 samples (dif. Aβ values)	- 2 replicates/dilution	- CV between dilutions ≤ 20%			
linearity	- Dil: 1/25, 1/50, 1/75, 1/100	-1 run	- RE vs nominal value ≤ 20%			

Correlations between A β 40, A β 42 and A β 42/40 quantified using ABtest-IA and an independent fully automated IVD test, (Lumipulse $^{\circ}$ G β -amyloid 1-40 and 1-42, Fujirebio), were estimated using 93 CSF samples of A β -PET+ (75%) and A β -PET- (25%) individuals from AB1601 cohort (aMCI & vmAD). Differences in CSF A β 42 and A β 42/A β 40 levels between both A β -PET groups were analyzed (Mann Whitney test).

The ability of CSF A β 42/A β 40 ratio to discriminate between A β -PET positive and A β -PET negative subjects was evaluated by means of Receiver Operating Characteristic (ROC) curve analysis, considering A β -PET as the gold standard.

CONCLUSION

ABtest40-IA and ABtest42-IA were successfully validated as new precise and accurate tools for the quantification of A β 40 and A β 42 in CSF samples. ABtest-IA measures of A β 42/A β 40 ratio in CSF identified individuals with brain amyloid deposition with equivalent ability to another test commercially available.

RESULTS

1. Analytical validation

All parameters evaluated in the analytical validation met the acceptance criteria. 1/50 sample dilution was established for A β 40 and A β 42 quantification in CSF samples with ABtest-IA.

Table 2: Summary of analytical validation of ABtest-IA for CSF samples.

		ABtest40-IA		ABtest42-IA	
		Mean	Range	Mean	Range
	Dynamic range (pg/mL)		43.9 to 500		5 to 100
Calibration curve	Accuracy, RE (%)	0.8	-2.3 to 3.5	1.3	-5.5 to 4.9
	Precision, CV (%)	2.6	0.1 to 12.2	3.3	0.8 to 8.7
	Total Error, (%)	4.4	0.5 to 12.4	4.6	0.9 to 11.9
Sensitivity	pg/mL	43.9		5.0	
Specificity	RE (%)	2	0.7 to 2.7	-2.0	-7.4 to 2.3
	Intra-assay, CV (%)	2.4	0.5 to 8.0	3.5	0.7 to 10.6
Precision	Inter-assay, CV (%)	5.2	5.0 to 5.5	7.4	5.1 to 10.9
	Inter-batch, CV (%)	2.5	0.4 to 6.0	5.2	1.8 to 10.9
Accuracy	RE (%)	4.6	-18.8 to 13.2	7.5	-26.3 to 19.2
Recovery	%	93.5	70.4 to 106.7	93.5	78.9 to 108.5
Dilution linearity	CV (%)	4.7	1.3 to 9.8	5.2	2.8 to 8.9
	RE (%)	6.1	-20.7 to 1.9	6.5	-18.5 to 9.8

RE: Relative Error; CV: Coefficient of Variation; Total Error (%): CV (%) + RE (%).

2. Correlation between methods

A β 40, A β 42 and A β 42/A β 40 quantified with ABtest-IA strongly correlate with Lumipulse data.

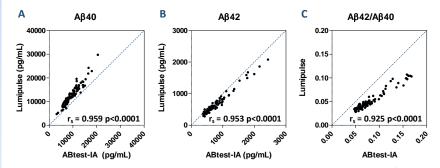


Figure 1: Correlations between ABtest-IA and Lumipulse for A β 40 (A), A β 42 (B) and A β 42/40 (C). r_s : Spearman rank coefficient.

3. Differences in Aβ CSF levels between Aβ-PET+ and Aβ-PET- groups

As expected, the A β -PET+ group presents significantly lower A β 42 (-47.1%) and A β 42/A β 40 (-42.7%) levels than the A β -PET- group.

Table 3: Levels of Aβ42 and Aβ42/40 in Aβ-PET+ and Aβ-PET- groups.

	Αβ	42	Αβ42/Αβ40		
	Aβ-PET+	Αβ-ΡΕΤ-	Aβ-PET+	Aβ-PET-	
Mean (pg/mL)	636	1202	0.069	0.121	
SD (pg/mL)	171.7	568.8	0.015	0.040	
% relat. dif. *	-47.1		-42.7		
p value	< 0.0001		< 0.0001		

¥% relative difference: 100*((Aβ-PET+ – Aβ-PET-)/Aβ-PET-).

The magnitude of these differences was very similar for Fujirebio data (data not shown).

4. ROC Analysis and CSF Aβ42/Aβ40 – Aβ-PET agreement

The AUC value in the ROC analysis was slightly better for the ratio A β 42/A β 40 than for the A β 42 biomarker alone.

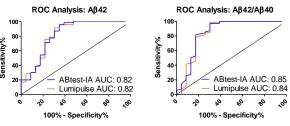


Figure 2: ROC analysis for Aβ42 (left) and Aβ42/Aβ40 (right).

Youden's index maximum was used to establish a cutoff of CSF A β 42/A β 40 positivity. A β -PET and CSF A β 42/40 biomarkers classified equally 90% of the subjects (n=84). Among the 9 discordant cases, 78% were CSF A β 42/40 positive and A β -PET negative. This supports that CSF A β 42/A β 40 is an earlier biomarker of cerebral amyloid deposition than A β -PET. Similar results were found with Fujirebio (data not shown).

- 1. Doecke JD et al., Total AB(42)/AB(40) ratio in plasma predicts amyloid-PET status, independent of clinical AD diagnosis. Neurology. 2020;94(15):e1580-e91.
- 2. Perez-Grijalba V et al., Plasma Abeta42/40 ratio alone or combined with FDG-PET can accurately predict amyloid-PET positivity: a cross-sectional analysis from the AB255 Study. Alzheimers Res Ther. 2019;11(1):96.