Plasma Aβ42/Aβ40, measured by a novel mass spectrometric method, identifies early amyloid deposition in individuals at risk of Alzheimer's disease (FACEHBI Cohort)

José Antonio Allué, PhD

Head of Mass Spectrometry
Araclon Biotech-Grifols

Disclosures

JAA is a full-time employee at Araclon Biotech S.L.

Experience with amyloid peptides in Araclon MS lab

ABtest-MS: Method features

- **Antibody free**: Analytes are extracted directly from plasma. No immunoprecipitation is carried out, avoiding undesirable drawbacks inherent to antibodies (cross-reactivity, batch-to-batch reproducibility, cost...)
- Analysis of intact Aβ1-40 and Aβ1-42 as no enzymatic digestion is performed
- Micro-HPLC: a perfect compromise between the sensitivity of Nano-HPLC and the robustness of Narrow-Bore / Analytical HPLC (0.1-1 ml/min)
- Mass Spectrometric: Electrospray Ionisation, followed by Ion Mobility separation and Triple Quadrupole MS/MS analysis

Analytical platform

- M3 Micro-HPLC system (Eksigent).
- Sciex QTRAP 6500+ (Hybrid Triple Quadrupole-Linear Ion Trap)
- SelexION⁺ Differential Mobility Spectrometry Interface (Sciex)

Differential Mobility Spectrometry (DMS)

- Used as a pre-filter after ionization and before mass analysis
- Objective: remove background noise and increase S/N

Only
will pass through DMS filter

Micro HPLC

Acidic pH, reversed phase chromatography (C18)

Method Overview

(Validated acording to current guidelines)

- Calibration curves are made **in human plasma**, spiking ¹⁵N-Aβ40 and ¹⁵N-Aβ42 at seven concentration levels. Duplicated curves are used in each analytical run
- Quality control samples in human plasma, at three concentration levels (Low, Mid and High) are included in each analytical run
- Deuterated Internal Standards (²H-Aβ40 and ²H-Aβ42) are added to calibration curves, quality control samples and study samples (with the exception of *Double Blank* samples)
- Unique extraction procedure: Patent filed in 2020 (EP2020382352)
- Micro-LC-ESI-DMS-MS/MS analysis
- Area ratios of the endogenous compounds (¹⁴N-Aβ/²H-Aβ) are interpolated in calibration curves made with ¹⁵N-Aβ analogues (*surrogate analyte* approach)

Suitability test before each analytical run

Equal transmission for heavy (15N) and light (14N) Aβ peptides is monitored

Sensitivity (LLOQ) and Linear Response

Endogenous signals interpolated in surrogate (¹⁵N-Aβ) analyte curves

Example of study sample

Assessment of clinical performance in the FACEHBI cohort

FACEHBI: Fundació ACE Healthy Brain Initiative

Principal Investigator: Prof. Mercè Boada MD, PhD.

- 200 cognitively unimpaired individuals with subjective cognitive decline (SCD)
- Eight-year follow-up planned
- Results corresponding to baseline (V0) and two-year follow-up (V2) visits are presented
- Analysis of five-year follow-up visit (V5) ongoing

Demographic and clinical characteristics at baseline

	Αβ-PET (-)	Aβ-PET (+) ^{&}	P value
Participants	164 (82%)	36 (18%)	
Age, years	66.0 (60.0-69.5)	70.0 (67.0-73.0)	.0003
Female	110 (67%)	16 (44%)	.0185
APOE £4, number of alleles			.0002
0 alleles	131 (80%)	17 (47%)	
1 alleles	29 (18%)	18 (50%)	
2 alleles	4 (2%)	1 (3%)	
Duration of education, years	15.0 (12.0-18.0)	16.0 (10.0-18.0)	.9796
FBB-PET, centiloids	-3.7 (-7.9-1.7)	34.1 (20.3-57.0)	< .0001
MMSE, score	29 (29-30)	30 (29-30)	.1321
S-FNAME, score	33.5 (22.0-46.0)	24.0 (16.0-33.0)	.0013
SFN-O, score	-0.01 (-0.72-0.86)	-0.16 (-0.82-0.40)	.1238
SFN-N, score	-0.03 (-0.61-0.65)	-0.88 (-1.050.22)	< .0001
Ventricular volume	24959.5 (19776.4-32028.2)	29061.4 (21966.7-38034.6)	.1079
Hippocampal volume	3606.1 (3421.0-3820.8)	3581.8 (3284.2-3792.7)	.3611
Plasma Aβ40, pg/ml	269.3 (243.9-294.2)	297.0 (267.2-317.6)	.0009
Plasma Aβ42, pg/ml	70.2 (63.1-77.3)	63.4 (57.8-72.1)	.0041
Plasma Aβ42/Aβ40, ratio	0.261 (0.244-0.279)	0.215 (0.203-0.236)	< .0001

Association of plasma Aß levels with brain amyloid deposition

Plasma Aβ42/Aβ40 discriminative ability of Aβ-PET status

Model	AUC	95% CI	Se	Sp	PPV	NPV	Acc
Ratio	0.87	0.80-0.93	86.1%	80.5%	49.2%	96.4%	81.5%
Ratio+ApoE+Age+Sex	0.89 ^{&}	0.83-0.94	86.1%	77.4%	45.6%	96.2%	79.0%
ApoE+Age+Sex	0.81	0.74-0.88	80.6%	69.5%	36.7%	94.2%	71.5%

ABtest-MS performance confirmed at two-year follow-up visit (V2)

V0 N = 200

Model	AUC	95% CI	Se	Sp	PPV	NPV	Acc
Ratio	0.87	0.80-0.93	86.1%	80.5%	49.2%	96.4%	81.5%
Ratio + ApoE + Age + Sex	0.89 ^{&}	0.83-0.94	86.1%	77.4%	45.6%	96.2%	79.0%
ApoE + Age + Sex	0.81	0.74-0.88	80.6%	69.5%	36.7%	94.2%	71.5%

V2 N = 165

Model	AUC	95% CI	Se	Sp	PPV	NPV	Acc	
Ratio	0.86	0.80-0.93	75.7%	86.7%	62.2%	92.5%	84.2%	Γ
Ratio + ApoE + Age + Sex	0.90 ^{\$}	0.85-0.96	89.2%	82.0%	58.9%	96.3%	83.6%	Γ
ApoE + Age + Sex	0.81	0.74-0.88	70.3%	80.5%	51.0%	90.4%	78.2%	Γ

1.2% difference

ROC curve of V0

ROC curve of V2

\$P = 0.006 vs base model. DeLong's test.

[&] P = 0.005 vs base model. DeLong's test.

Plasma A β 42/A β 40 at baseline and conversion to A β -PET(+)

Aβ-PET status at two-year follow-up

Participants with lower Aβ42/Aβ40 values present higher risk of conversion to Aβ-PET(+)

Plasma Aβ42/Aβ40 at baseline and conversion to MCI

Converters to MCI in V2 show lower values of A β 42/A β 40 at baseline (V0)

Participants with lower Aβ42/Aβ40 values present higher risk of conversion to MCI

Cross-validation in an independent cohort (DPUK-Korea)¹

148 CU individuals

SAMSUNG MEDICAL CENTER

	Aβ-PET (-)	Aβ-PET (+)	P value
Participants	131 (89%)	17 (11%)	
Age, years	69.0 (64.5-75.0)	74.0 (72.0-79.0)	.0036
Female	88 (67%)	10 (59%)	.6800
APOE ε4, number of alleles			.0030
0 alleles	102 (78%)	7 (41%)	
1 alleles	26 (20%)	8 (47%)	
2 alleles	3 (2%)	2 (12%)	
Duration of education, years	12.0 (6.0-16.0)	12.0 (6.0-12.0)	.4210
Aβ-PET, centiloids	2.8 (-2.3-7.3)	58.6 (41.8-76.0)	< .0001
MMSE	28 (27-30)	28 (27-29)	.2329

Conclusions

- We have set up and validated a new method (ABtest-MS) which allows direct quantitation
 of Aβ1-40 and Aβ1-42 in plasma independently of any immunoprecipitation and / or
 enzymatic digestion procedure, thus maintaining all the advantages of MS but with a
 simplified workflow
- ABtest-MS has demonstrated good clinical performance in a cohort of 200 cognitively unimpaired individuals with subjective cognitive decline (FACEHBI Cohort)
- This performance has been confirmed after the analysis of the two year follow-up visit (V2)
- Plasma Aβ42/Aβ40, as measured with ABtest-MS, may be an useful tool for prediction of conversion to PET(+) and MCI (ongoing validation with data from V5 and successive visits)
- Robustness of the predictive model has been validated in an independent cohort with 148 cognitively unimpaired individuals (DPUK-Korea Cohort)

Aknowledgements

Araclon Biotech

María Pascual-Lucas Leticia Sarasa Noelia Fandos Sergio Castillo Jose Terencio

Marta Marquié
Juan-Pablo Tartari
Ángela Sanabria
Silvia Alonso-Lana
Óscar Sotolongo-Grau
Emilio Alarcón-Martín
Sergi Valero
Itziar de Rojas
Lluis Tárraga
Agustín Ruiz
Mercè Boada

SAMSUNG MEDICAL CENTER

Sang Won Seo Hyemin Jang

Mª Eugenia Sáez

In Memoriam

Prof. Dr. Manuel Sarasa (1957-2020)

Thanks for your attention

Q & A

