Araclon Biotech GRIFOLS

Comparative performance of plasma Aβ42/Aβ40 and p-tau181 for the detection of early brain amyloid deposition in individuals with subjective cognitive decline

María Pascual-Lucas¹, José Antonio Allué¹, Leticia Sarasa¹, Noelia Fandos¹, Sergio Castillo¹, Jose Terencio¹, Manuel Sarasa¹⁺, Juan Pablo Tartari², Ángela Sanabria^{2,3}, Lluís Tárraga^{2,3}, Agustín Ruiz^{2,3}, Marta Marquié^{2,3}, Mercè Boada²,³

¹Araclon Biotech-Grifols - Zaragoza (Spain), ²Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya - Barcelona (Spain), ³CIBERNED, National Institute of Health Carlos III - Madrid (Spain), [†] Deceased May 27, 2020

BACKGROUND

In the last years, **blood-based biomarkers** have shown high accuracy for the identification of early alterations of Alzheimer's disease (AD). Among them, plasma A β 42/A β 40 and p-tau181 have been proved to be reliable biomarkers of brain amyloid deposition. However, the quantification of these molecules in plasma, mainly A β 42, presents analytical difficulties and **high reliability analytical assays** are needed in order to avoid biased conclusions about the comparative performance of both biomarkers. In this study, we aim to avoid these uncertainties by the introduction of a high sensitivity assay based on HPLC-MS for the quantification of A β peptides in plasma.

OBJECTIVE

To compare the ability of **plasma Aβ42/Aβ40** ratio measured with a mass spectrometry-based assay and **plasma p-tau181** measured with a highsensitivity technology to detect **early brain amyloid deposition** in individuals at risk of AD.

METHODS

152 subjects with subjective cognitive decline (SCD) from the FACEHBI cohort were included in the present study, of which 16% were A β -PET (+). Plasma A β 40 and A β 42 were quantified with a high sensitivity antibody-free mass spectrometrybased assay (ABtest-MS, Araclon Biotech). Plasma p-tau181 was measured with Simoa® pTau-181 V2 Advantage Kit (Quanterix). The ability of plasma biomarkers alone, combined or after the addition of demographic covariates, to detect A β -PET positivity was assessed by logistic regression and ROC curve analysis.

RESULTS

1. Characteristics of the study population

Table 1. Characteristics of the study population. Data are median values (interquartile range) or number of cases (%). Differences between A6-PET (-) and A6-PET (+) groups were tested using Mann-Whitney and Chi-square tests, as appropriate.

	All	Αβ-ΡΕΤ (-)	Аβ-РЕТ (+)	P value	
Participants	152	125 (82%)	27 (18%)		
Age, years	66.0 (60.0-70.0)	64 (60.0-69.0)	70 (67.0-72.0)	.001	
Female	95 (63%)	82 (66%)	13 (48%)	.139	
APOE £4				<.0001	
1 alleles	39 (26%)	23 (18%)	16 (59%)		
2 alleles	3 (2%)	2 (2%)	1 (4%)		
MMSE, score	30 (29-30)	29 (29-30)	30 (29-30)	.361	
FBB-PET, CL	-1.43 (-6.66-6.57)	-3.6 (-7.8-1.5)	32.8 (21.2-60.6)	<.0001	
Αβ42/Αβ40	0.258 (0.236-0.276)	0.261 (0.244-0.278)	0.216 (0.199-0.236)	<.0001	
p-tau181 , pg/ml	1.81 (1.38-2.40)	1.71 (1.32-2.07)	2.67 (2.28-3.19)	<.0001	

Plasma A β 42/A β 40 levels were significantly reduced in the A β -PET (+) group compared to A β -PET (-) subjects, whereas the opposite was observed for plasma p-tau181 (*P*<.0001 in both cases, Mann-Whitney test) (**Table 1** and **Figure 1**).

Figure 1. Box and whiskers plots of plasma A642/A640 and p-tau181 between A6-PET groups. *** P < .0001, Mann-Whitney test.

2. Discriminative ability of Aβ-PET status

Plasma A β 42/A β 40 ratio and p-tau181 identified A β -PET status with an AUC of 0.86 (95% CI 0.78–0.94) and 0.83 (95% CI 0.76–0.90), respectively (**Figure 2**). At the maximum Youden index, both plasma biomarkers presented a sensitivity of 81.5%, whereas A β 42/A β 40 ratio presented slightly superior specificity (84.0%) and overall accuracy (83.6%) than p-tau181 (80.8% and 80.9%, respectively) (**Table 2**).

The combination of plasma biomarkers yielded an AUC of 0.88 (95% CI 0.82-0.95). The inclusion of demographic covariates (age and APOE ε 4 number of alleles) increased the AUC up to 0.90 (95% CI 0.85-0.96) (full model). Both A β 42/A β 40 and p-tau181 contributed significantly to this model (*P*<.0001 and *P*=.04, respectively). The full model significantly outperformed p-tau181 alone (Δ AUC=0.07, *P*=.04), but did not differ from A β 42/A β 40 (Δ AUC=0.04, *P*=.09) (**Table 2**).

Goodness of fit was assessed using AIC. Plasma A β 42/A β 40 model presented lower AIC (101.3) than the model composed of plasma p-tau181 (AIC=115.7).

The combination of both biomarkers yielded AIC=94.7, and the inclusion of demographic covariates did not further improve the fit in this case (AIC=94.4).

Table 2. Performance of predictive models to identify A6-PET status. * P values correspond to the comparison of AUC versus the full model using DeLong test.

Biomarker 1	Biomarker 2	Covariates	AUC (95% CI)	P value*	Sen (%)	Sp (%)	PPV (%)	NPV (%)	Acc (%)
Αβ42/Αβ40	-	-	0.86 (0.78-0.94)	ns	81.5	84.0	52.4	95.5	83.6
p-tau181	-	-	0.83 (0.76-0.90)	0.04	81.5	80.8	47.8	95.3	80.9
Αβ42/Αβ40	p-tau181	-	0.88 (0.82-0.95)	ns	85.2	86.4	57.5	96.4	86.2
Αβ42/Αβ40	p-tau181	Age, APOE ε4	0.90 (0.85-0.96)	-	92.6	75.2	44.6	97.9	78.3

CONCLUSIONS

The use of a high reliability method for the quantification of plasma A β based on HPLC-MS (ABtest-MS) suggests that **plasma A\beta42/A\beta40 ratio could be a more accurate biomarker of early brain amyloid deposition** than p-tau181 in the first stages of AD.